《约分》教学反思
身为一名人民教师,我们要在教学中快速成长,借助教学反思我们可以快速提升自己的教学能力,那么写教学反思需要注意哪些问题呢?下面是小编为大家收集的《约分》教学反思 ,欢迎大家借鉴与参考,希望对大家有所帮助。
《约分》教学反思 1约分是分数基本性质的直接应用.为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。
“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!
无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。
《约分》教学反思 2我昨天讲授了《约分》,孩子们掌握得不是很理想,讲完从头脑的接收,到理解消化,需要一个过程。在讲授约分概念的时候,学生对把一个分数的分子和分母同 时除以公因数,分数的值不变,这个过程叫约分等数学专业字眼不是很理解,于是我就举例,语文课上,你们学会缩写句子吗?学生异口同声回答学过。在 数学上,约分就好比一个缩写句子的过程,去掉修饰,剩下的主干再不能缩了,就叫最简分数。再比如,你们吃过花生吗?是不是先剥去外壳,然后再搓去红皮,最 后剩下白仁,还能再剥吗?这就相当于最简分数。明白吗?这时,孩子们才若有所思地点点头,从脸上表情中看出刚才的困惑释放了不少,我才稍稍放下心来。
在随后的练习中,我巡视发现有近三分之一的学生约分不能到最简分数,只是除以其中一两个公因数而已。针对以上情况,我抛出一个问题最简分数分哪几种情 况?,学生各抒己见,最后我们共同总结出三种情况,一是分子和分母是相邻的关系,它们的公因数是1,是最简分数;二是分子和分子是不同的质数的情况下, 它们的公因数也是1,是最简分数;三是分子是一的分数,它们的公因数也是1,是最简分数。有了以上总结这三点,学生不仅节约了判断的时间,还有了检验是否 化到最简分数的标准,有效降低了出错率。
由今天的发现延伸到数学课堂,我发现数学课不能只是刻板地复制教材,而是教师要用自己对教材的理解,深入浅出地传授给学生。数学教师要用适合学生的教学方 法和教学语言,找到与学生的交融点,让学生真正地理解知识点。另外,数学问题随着教学的深入而发展,学生的思维也一直处于积极思考的状态,学生的潜能能得 到充分地挖掘,让课堂充满生命力。
一个充满智慧的教师,不仅要教给学生知识,更要教给学生方法,让他们学会学习。所以在本节课我抛出问题后,不急着给出答案,先让学生思考,总结什么样的分 数属于最简分数,然后教师再去总结,归纳。这让我不禁想起一位教育家的话:给孩子一些权利,让他自己去选择,给孩子一些机会,让他自己去体验,给孩子一 些困难,让他自己去尝试,给孩子一个问题,让他自己去解决,给孩子一片天空,让他自己去发挥。这种理念不断指引着自己的方向,体验于数学课中。
《约分》教学反思 3《约分》主要是让学生理解约分及最简分数的意义,掌握约分方法,能准确判断约分的结果是不是最简分数是教学难点。通过学习培养学生观察、比较和归纳的能力以及综合运用所学知识解决实际问题的能力。
通过课堂教学,我们班学生对概念都能够理解,知道约分的含义,以及如何约分。虽然课堂上我一再强调,但是学生在进行实地操作时,还是有一部分同学不能约成最简分数,比如(1) 18/54 ,分子与分母同时除以9以后,变成2/6 ,就停止约分了,没有逐次约分成最简分数(2)想一次约分,却找不到分子与分母的最大公因数,比如 26/39,学生找不出最大公因数是13。这说明学生对已经学习过的常用的 “缩倍法”求最大公因数的应用存在遗忘,或者说不会有效地运用“缩倍法”,因此,求分子与分母的最大公因数还是要加强训练。
书写不规范。约分的过程应该把约分后得到的数字写在分子与分母的上、下。但有个别学生写在了分子与分母的右边。对于这种情况,在口头纠正的同时,要让学生重写,加深印象。
针对作业中出现的这些问题,我又把典型错题集中讲解了一下,同时复习约分的方法,自编10道约分的题目,让学生当场完成,相对来说效果比前面好多了。我还发现数感强的同学已经可以心算得出最简分数了,可是一般的同学却还要用基本方法、花相对较长的时间找出最简分数。最糟糕的是还有几个别同学还不能把一个分数约成最简分数。
课后,我仔细分析一下原因,学生的数感很重要,约分是要凭学生的数感的。数感与学生的兴趣、已有认知等基础上紧密联系,数感的培养也非一日之功。在今后教学中,我要有意识设计相关练习作积累,调动学生的兴趣,培养学生的数感。
《约分》教学反思 4教学 目标
1.使学生认识约分和最简分数的意义,理解和掌握约分的方法。
2.培养学生的观察、比较和归纳等思维能力。
教学 重点
掌握约分的方法。
教学 难点
很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
教学 准备
1.多媒体课件。 2.作业纸。
3.分数卡片、信封袋。 4.记号笔、白纸。
板书 设计
约 分
例1:把化简。 例2:把约分。 == 板书约分的两种形式 == 板书分母是9的 == 所有最简真分数。
教学 过程 教师边导边教
学生边学边练
评 析
一、情境导入, 复习巩固, 激发兴趣。
1.引发学生学习兴趣,和孙悟空比本领。 2.指出下面每组数中的公约数(1除外)。 42和50、15和5、8和21、18和12 3.在括号里填上适当的数。选择第三道题问:你是怎么想的? = = == 利用该知识,把分数化成同它相等的另一个分数。
快速口答
突出回答8和21只有公约数1,所以8和21是互质数。
利用分数的基本性质,达到回顾知识的效果。
有简洁的导入:孩子们对孙悟空这一神话人物充满好奇,以和悟空比本领谈话导入,引发大家的学习兴趣,紧接着回顾求公约数和分数的基本性质,明确又简单,为理解最简分数和掌握约分的方法作好准备。用一句简短而富有神秘挑战性的话语“大家都知 ……此处隐藏7330个字……p>3、实践探究
师:再看八戒为我们带来的这4个分数,哪个是最简分数?
生:这4个数中, 1/3分数。
师:说说其它的3个为什么不是最简分数。
师:现在,请你从3个分数中任选一个进行约分,然后在小组内交流约分的方法。
师:请这两个同学来介绍一下约人的过程。
生1:我发现8和24有公因数2,8除以2等于4,24除以2等于12,4和12有公因数2,4除以2等于2,12除以2等于6,6和2有公因数2,6除以2等于3,2除以2等于1,所以8/24约分后等于 1/3
生2:我直接看,8和24的最大公因数是8,直接约分8/24=1/3 。
(评析:培养学生的求异思维能力。要求学生不是简单的模仿,应该有自己独特的思维。同时为学生提供小组学习交流的时间与空间,更有助于内向的学生发表自己的见解。)
师:比较两个同学的方法,有什么异同?你更喜欢哪一种?
生1:这两个同学都是用分子和分母的公因数去除,结果都是1/3 。不同的地方,第一种方法,除了好几次,第二种方法只除了1次就行,所以我喜欢第二种方法。
师:为什么第二种方法可以只除1次?
生:因为他求出了分子和分母的最大公因数,所以只除了1次就行。
师:都这样想吗?
生:我喜欢第一种方法,因为计算准确,不容易错。
师:两种方法都可以,但是无论哪一种方法,我们在约分的时候都应该注意什么?
(评析:不同方法的比较使学生对于约分的方法有了更加深刻地认识。但是对于学生的选择应当给予充分的尊重,我们认为好的对于学生来说并不一定也是最好的。)
生1:用公因数去除。
师:谁的公因数?能完整地说一遍吗?
生2:约分的结果应该是一个最简分数。
接着学生汇报2/6和 4/12约分方法。
师:谁能完整的说一说约分的方法和应注意的问题。
(评析:教师的提问有思考的价值,能够引发学生的思考。但是当学生的发言无序而散乱时,教师充分发挥了主导的作用,提升学生的认识。)
(三)、巩固练习
师:八戒感谢大家帮助他解决了今天遇到的难题,想请大家一起去赏灯。让我们和八戒一同前往吧!
1、第48页第2题。
(1) 学生独立连线。
(2)集体交流,为什么这样连?(媒体演示)
2、第48页第1题。
(1)学生试做。
(2)集体交流。
师:约分时怎样才能又对又快,你的心得是什么?
生1:看分子和分母的个位,如果是2和5的倍数就可以直接除以2和5。
师:也就是说需要我们准确判断出是几的倍数,快速进行约分,对吗?
生2:像分子和分母之间是倍数关系的,可以直接得到几分之一。
……
师:这些方法都很好,我们在约分的时候,注意观察和思考,不要盲目进行。
(评析:练习的设计应该是这样,每一道题都使学生有所收获,教师应该帮助学生及时收集这些方法,提高学生的熟练程度。)
3、教材第48页第3题,比较大小。
(1) 学生试做
(2)小组内交流比较好的方法。
(3)反馈信息
4、小小投递员
师: 噫!八戒哪里去了?(出示电脑课件)原来在这里。八戒又遇到了什么难题?
(课件演示)要求每个同学一封信,信封上的分数的分数值与哪个小房子上的数相同,就把信送到那所小房子的下面。
生完成送信活动,集体评议。
(评析:游戏是学生最愿意参与的学习方式,寓教于乐。)
(四)全课总结:通过本课的学习,你有什么收获?
八.课堂练习:见上述教学设计中。
九.作业安排:
1、约分在单位换算中的应用。
在( )里填上最简分数。
6分米=( )米 40厘米=( )米
15秒=( )分 25分=( )时
2、约分在小数化分数中的应用。
把下面个小数化成分数,能约分的要约成最简分数。
0.6 0.45 0.37 0.75 1.5 3.25
《约分》教学反思 14约分是分数基本性质的直接应用。为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。
“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,
终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。
约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。
《约分》教学反思 15本节课,我还是采用四段的教学方法。第一步是新课前的复习,第二步是教学新课,第三步是巩固练习,第四步知识整理拓展训练。
教学前为学生提供充分探究和发现的时间与空间。分数的基本性质,从约分含义的理解到约分方法的学习,教师始终立足于培养学生的学习能力、教会学生学习方法的基础上,相信学生的潜能,通过第一组活动,引发学生思考,发现几个分子分母不同的分数相同;借助第二组活动引导学生观察、理解约分的含义;创设第三组活动,为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。可以说整个学习过程中,学生是学习的主体,教学的重点和难点都是在学生的发现、探究、讨论中解决,课堂处处闪动着学生智慧的光芒。
教学中教师关键处的点拨和发人深省的提问充分体现了教学主导的作用,既引导学生的发现,又不限制学生的思路;既能放开手充分培养学生的发散思维,又能在发散思维之后,求同存异,提升学生的认识,使课堂充满生机,启发引导无痕迹。
练习的设计体现了清晰的层次性,尤其是最后游戏的创设符合儿童好玩、好动、天真活泼的特点,同时又寓教于乐,使学生对约分的认识有了更新鲜,不呆板的认识。
觉得我的失误是在开始预设时,在教学时过早地引入一次约分的方法,这个方法没有让学生自己通过大量的分步约分的练习来体会来比较。由于有的学生对两个数的最大公因数一次很难找准,给一次约分造成困难。我觉得以后再上此课时,要注意。
文档为doc格式